闵文文个人主页

一、个人简介

  • 闵文文,云南大学信息学院,计算机科学与工程系副教授,博士生导师 (计算机科学与技术方向)。
  • 闵老师长期从事人工智能算法(图神经网络、深度扩散模型、Transformer模型、对比学习、基于掩码机制的自监督学习、矩阵张量优化等)及其应用研究。

二、研究方向

🎯人工智能理论方法

  • 深度学习理论方法(图神经网络、深度扩散模型、Transformer、对比学习、大模型)
  • 机器学习理论方法(矩阵张量方法,非凸优化、L20及L0结构稀疏优化、特征选择)
  • 多模态之融合学习(图神经网络,扩散模型,深度对比学习)

🎯医学人工智能方法

  • AI + 医学图像计算
  • AI + 多模态生物医学数据

🎯 招生广告 (博士+硕士)

  • 本人目前可以招收计算机相关专业的专硕、学硕、博士,目前不考虑招生外籍学生
  • AI+数据挖掘的团队,不限定数据类型,挖掘的数据对象可包括:医学图像数据,生物组学数据,自然图像数据,网络结构数据等,不需要任何生物医学背景,专注于人工智能的新算法开发!!!
  • 招生要求: 坚持不懈的毅力(最看重的品质);良好的编程、数学、英语能力
  • 感兴趣的同学可以给我邮件(wenwen.min@qq.com, minwenwen@ynu.edu.cn);邮件内容包括如下信息:个人简历+本科成绩单+考研成绩+复试上机成绩。

三、学术论文

四、代表作

计算领域期刊和会议

  • [01] Wenwen Min*, Taosheng Xu, Xiang Wan, Tsung-Hui Chang. Structured Sparse Non-negative Matrix Factorization with L20-Norm. IEEE Transactions on Knowledge and Data Engineering, 35(8):8584-8595, 2023 (中科院一区, CCF A类期刊, IF=10.4) [下载]

  • [02] Wenwen Min, Juan Liu*, Shihua Zhang*. Group-sparse SVD Models via L0 and L1-norm Penalties and Their Applications in Biological Data. IEEE Transactions on Knowledge and Data Engineering, 33(2):536-550, 2021 (中科院一区, CCF A类期刊, IF=10.4) [下载]

  • [03] Wenwen Min, Xiang Wan, Tsung-Hui Chang, Shihua Zhang*. A Novel Sparse Graph-Regularized Singular Value Decomposition Model for Gene Co-Expression Pattern Discovery. IEEE Transactions on Neural Networks and Learning Systems, 33(8):3842-3856, 2022 (中科院一区,CCF B类期刊, IF=14.255) [下载]

  • [04] Weighted sparse partial least squares for joint sample and feature selection. IEEE Transactions on Computational Biology and Bioinformatics 2025 (中科院二区, CCF B类期刊) (一作+通讯作者, 方法领域:机器学习)

  • [05] Network-regularized sparse logistic regression models for clinical risk prediction and biomarker discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(3):944-953, 2018 (CCF B类期刊, IF=4.5) (一作, 方法领域:机器学习)

  • [06] A two-stage method to identify joint modules from matched microRNA and mRNA expression data. IEEE Transactions on Nanobioscience, 15(4):362-370, 2016 (一作, 方法领域:机器学习)

  • [07] Geometry-informed Multimodal Fusion Network for Enhancing High-density Spatial Transcriptomics from Histology Images. Engineering Applications of Artificial Intelligence 2025 (中科院一区, IF=8)(唯一通讯作者, 方法领域:图神经网络 GitHub)

  • [08] Inferring Super-Resolved Gene Expression by Integrating Histology Images and Spatial Transcriptomics with HISTEX. MICCAI 2025 (CCF B, 医学图像计算顶会,MICCAI2025 Top 2%) (Best Paper, 唯一通讯作者, 方法领域:注意力机制 GitHub)

  • [09] Boundary-Aware Gradient Operator Network for Medical Image Segmentation. IEEE Journal of Biomedical and Health Informatics, 2024 (中科院一区, CCF C类期刊, IF=7.7) (一作, 方法领域:医学图像分割 GitHub)

  • [10] Precise facial landmark detection by reference heatmap transformer. IEEE Transactions on Image Processing (中科院一区, CCF A类期刊, IF=13.7)

人工智能生物医学领域

  • [01] SpaBatch: Deep learning-based cross-slice integration and 3D spatial domain identification in spatial transcriptomics, Advanced Science 2025 (中科院一区, IF=14.3) (唯一通讯作者, 方法领域:图神经网络 GitHub)

  • [02] SpaCross deciphers spatial structures and corrects batch effects in multi-slice spatially resolved transcriptomics, Communications Biology 2025 (Nature小子刊, 中科院一区, IF=5.3)(唯一通讯作者, 方法领域:图神经网络 GitHub)

  • [03] SpaMask: Dual masking graph autoencoder with contrastive learning for spatial transcriptomics. PLOS Computational Biology 2025 (领域顶刊, 中科院二区,CCF B) (唯一通讯作者, 方法领域:图神经网络 GitHub)

  • [04] SpaDAMA: Improving Cell-Type Composition Inference in Spatial Transcriptomics with Domain-Adversarial Masked Autoencoder, PLOS Computational Biology 2025 (领域顶刊, 中科院二区,CCF B) (唯一通讯作者, 方法领域:对抗网络 GitHub)

  • [05] TSCCA: A tensor sparse CCA method for detecting microRNA-gene patterns from multiple cancers. PLoS Computational Biology, 17(6):e1009044, 2021 (领域顶刊, 中科院二区,CCF B, IF=4.779)

  • [06] SpaICL: Image-Guided Curriculum Strategy-Based Graph Contrastive Learning for Spatial Transcriptomics Clustering. Briefings in Bioinformatics 2025 (CCF B类期刊, 中科院一区, IF=9.5) (学生一作导师通讯, 学生:计算机技术专业, 方法领域:图对比学习 GitHub)

  • [07] Inferring single-cell resolution spatial gene expression via fusing spot-based spatial transcriptomics, location and histology using GCN. Briefings in Bioinformatics 2025 , DOI: 10.1093/bib/bbae630 (CCF B类期刊, 中科院一区, IF=9.5) (学生一作导师通讯, 学生:计算机技术专业, 方法领域:图神经网络 GitHub)

  • [08] SpaDiT: Diffusion Transformer for Spatial Gene Expression Prediction using scRNA-seq. Briefings in Bioinformatics 2024, DOI: 10.1093/bib/bbae571 (CCF B类期刊, 中科院一区, IF=9.5) (学生一作导师通讯,学生: 计算机应用技术专业, 方法领域:深度扩散模型 GitHub)

  • [09] Multimodal contrastive learning for spatial gene expression prediction using histology images. Briefings in Bioinformatics 2024 , DOI: 10.1093/bib/bbae551 (CCF B类期刊, 中科院一区, IF=9.5) (学生二作导师通讯, 学生:人工智能专业, 方法领域:深度对比学习 GitHub)

  • [10] Edge-group sparse PCA for network-guided high dimensional data analysis. Bioinformatics, 34(20):3479-3487, 2018 (CCF B类期刊, IF=6.931) (唯一第一作者)